skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sumerlin, Brent S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A photomediated approach allows a one-pot fabrication of stable coatings of polyelectrolyte complexes with a reversible crosslinking. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  2. Polymerization-induced self-assembly (PISA) is leveraged for the synthesis of ultra-high molecular weight polymers in concentrated but free-flowing dispersions. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  3. Wavelength-dependent photoreactions present an opportunity to achieve chemoselectivity of functional groups that otherwise demonstrate similar reactivity under traditional thermal conditions. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  4. Free, publicly-accessible full text available November 8, 2025
  5. Abstract We describe a methodology of post‐polymerization functionalization to enable subsequent bulk depolymerization to monomer by utilizing mechanochemical macro‐radical generation. By harnessing ultrasonic chain‐scission in the presence ofN‐hydroxyphthalimide methacrylate (PhthMA), we successfully chain‐end functionalize polymers to promote subsequent depolymerization in bulk, achieving up to 82 % depolymerization of poly(methyl methacrylate) (PMMA) and poly(α‐methylstyrene) (PAMS) within 30 min. This method of depolymerization yields a high‐purity monomer that can be repolymerized. Moreover, as compared to the most common methods of depolymerization, this work is most efficient with ultra‐high molecular weight (UHMW) polymers, establishing a method with the potential to address highly persistent, non‐degradable all‐carbon backbone plastic materials. Lastly, we demonstrate the expansion of this depolymerization method to commercial cell cast PMMA, achieving high degrees of depolymerization from post‐consumer waste. This work is the first demonstration of applying PhthMA‐promoted depolymerization strategies in homopolymer PMMA and PAMS prepared by conventional polymerization methods. 
    more » « less